Vue2 虚拟DOM与Diff算法深度解析
虚拟DOM是Vue2性能优化的核心技术,通过JavaScript对象描述DOM结构,结合高效的diff算法实现最小化DOM操作。
🎯 虚拟DOM概述
虚拟DOM(Virtual DOM)是对真实DOM的抽象表示,具有以下优势:
- 性能优化:减少直接操作DOM的次数
- 跨平台:可以渲染到不同平台
- 可预测性:函数式的更新方式
mermaid
graph LR
A[Template] --> B[Render Function]
B --> C[Virtual DOM]
C --> D[Diff Algorithm]
D --> E[Patch]
E --> F[Real DOM]
G[State Change] --> H[Re-render]
H --> I[New Virtual DOM]
I --> D
🏗️ VNode 结构
VNode(Virtual Node)是虚拟DOM的基本单元:
javascript
class VNode {
constructor(
tag, // 标签名
data, // 节点数据(属性、事件等)
children, // 子节点
text, // 文本内容
elm, // 对应的真实DOM节点
context, // 组件实例
componentOptions, // 组件选项
asyncFactory // 异步组件工厂函数
) {
this.tag = tag
this.data = data
this.children = children
this.text = text
this.elm = elm
this.ns = undefined
this.context = context
this.fnContext = undefined
this.fnOptions = undefined
this.fnScopeId = undefined
this.key = data && data.key
this.componentOptions = componentOptions
this.componentInstance = undefined
this.parent = undefined
this.raw = false
this.isStatic = false
this.isRootInsert = true
this.isComment = false
this.isCloned = false
this.isOnce = false
this.asyncFactory = asyncFactory
this.asyncMeta = undefined
this.isAsyncPlaceholder = false
}
}
// 创建不同类型的VNode
function createEmptyVNode(text = '') {
const node = new VNode()
node.text = text
node.isComment = true
return node
}
function createTextVNode(val) {
return new VNode(undefined, undefined, undefined, String(val))
}
function createComponent(Ctor, data, context, children, tag) {
// 组件VNode创建逻辑
const baseCtor = context.$options._base
if (isObject(Ctor)) {
Ctor = baseCtor.extend(Ctor)
}
data = data || {}
// 安装组件钩子函数
installComponentHooks(data)
const name = Ctor.options.name || tag
const vnode = new VNode(
`vue-component-${Ctor.cid}${name ? `-${name}` : ''}`,
data, undefined, undefined, undefined, context,
{ Ctor, propsData, listeners, tag, children },
asyncFactory
)
return vnode
}
⚡ Diff算法核心
Vue2的diff算法采用同层比较策略,时间复杂度为O(n):
1. patch 函数
patch是diff算法的入口函数:
javascript
function patch(oldVnode, vnode, hydrating, removeOnly) {
// 新节点不存在,删除旧节点
if (isUndef(vnode)) {
if (isDef(oldVnode)) invokeDestroyHook(oldVnode)
return
}
let isInitialPatch = false
const insertedVnodeQueue = []
// 旧节点不存在,创建新节点
if (isUndef(oldVnode)) {
isInitialPatch = true
createElm(vnode, insertedVnodeQueue)
} else {
const isRealElement = isDef(oldVnode.nodeType)
// 相同节点,进行patchVnode
if (!isRealElement && sameVnode(oldVnode, vnode)) {
patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly)
} else {
// 不同节点,替换
if (isRealElement) {
oldVnode = emptyNodeAt(oldVnode)
}
const oldElm = oldVnode.elm
const parentElm = nodeOps.parentNode(oldElm)
// 创建新节点
createElm(
vnode,
insertedVnodeQueue,
oldElm._leaveCb ? null : parentElm,
nodeOps.nextSibling(oldElm)
)
// 递归更新父占位符节点
if (isDef(vnode.parent)) {
let ancestor = vnode.parent
const patchable = isPatchable(vnode)
while (ancestor) {
for (let i = 0; i < cbs.destroy.length; ++i) {
cbs.destroy[i](ancestor)
}
ancestor.elm = vnode.elm
if (patchable) {
for (let i = 0; i < cbs.create.length; ++i) {
cbs.create[i](emptyNode, ancestor)
}
}
ancestor = ancestor.parent
}
}
// 删除旧节点
if (isDef(parentElm)) {
removeVnodes([oldVnode], 0, 0)
} else if (isDef(oldVnode.tag)) {
invokeDestroyHook(oldVnode)
}
}
}
invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch)
return vnode.elm
}
2. sameVnode 判断
判断两个节点是否相同的关键函数:
javascript
function sameVnode(a, b) {
return (
a.key === b.key && (
(
a.tag === b.tag &&
a.isComment === b.isComment &&
isDef(a.data) === isDef(b.data) &&
sameInputType(a, b)
) || (
isTrue(a.isAsyncPlaceholder) &&
a.asyncFactory === b.asyncFactory &&
isUndef(b.asyncFactory.error)
)
)
)
}
function sameInputType(a, b) {
if (a.tag !== 'input') return true
let i
const typeA = isDef(i = a.data) && isDef(i = i.attrs) && i.type
const typeB = isDef(i = b.data) && isDef(i = i.attrs) && i.type
return typeA === typeB || isTextInputType(typeA) && isTextInputType(typeB)
}
3. patchVnode 核心逻辑
对相同节点进行详细比较:
javascript
function patchVnode(
oldVnode,
vnode,
insertedVnodeQueue,
ownerArray,
index,
removeOnly
) {
// 完全相同的节点,直接返回
if (oldVnode === vnode) {
return
}
if (isDef(vnode.elm) && isDef(ownerArray)) {
vnode = ownerArray[index] = cloneVNode(vnode)
}
const elm = vnode.elm = oldVnode.elm
// 异步占位符处理
if (isTrue(oldVnode.isAsyncPlaceholder)) {
if (isDef(vnode.asyncFactory.resolved)) {
hydrate(oldVnode.elm, vnode, insertedVnodeQueue)
} else {
vnode.isAsyncPlaceholder = true
}
return
}
// 静态节点处理
if (isTrue(vnode.isStatic) &&
isTrue(oldVnode.isStatic) &&
vnode.key === oldVnode.key &&
(isTrue(vnode.isCloned) || isTrue(vnode.isOnce))) {
vnode.componentInstance = oldVnode.componentInstance
return
}
let i
const data = vnode.data
if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) {
i(oldVnode, vnode)
}
const oldCh = oldVnode.children
const ch = vnode.children
// 更新属性
if (isDef(data) && isPatchable(vnode)) {
for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
}
// 文本节点处理
if (isUndef(vnode.text)) {
if (isDef(oldCh) && isDef(ch)) {
// 都有子节点,进行子节点diff
if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
} else if (isDef(ch)) {
// 只有新节点有子节点
if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
} else if (isDef(oldCh)) {
// 只有旧节点有子节点
removeVnodes(oldCh, 0, oldCh.length - 1)
} else if (isDef(oldVnode.text)) {
// 都没有子节点,清空文本
nodeOps.setTextContent(elm, '')
}
} else if (oldVnode.text !== vnode.text) {
// 文本不同,更新文本
nodeOps.setTextContent(elm, vnode.text)
}
if (isDef(data)) {
if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
}
}
4. updateChildren 双端比较
这是diff算法的核心,使用双端比较策略:
javascript
function updateChildren(parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {
let oldStartIdx = 0
let newStartIdx = 0
let oldEndIdx = oldCh.length - 1
let oldStartVnode = oldCh[0]
let oldEndVnode = oldCh[oldEndIdx]
let newEndIdx = newCh.length - 1
let newStartVnode = newCh[0]
let newEndVnode = newCh[newEndIdx]
let oldKeyToIdx, idxInOld, vnodeToMove, refElm
const canMove = !removeOnly
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
if (isUndef(oldStartVnode)) {
oldStartVnode = oldCh[++oldStartIdx] // 跳过已处理的节点
} else if (isUndef(oldEndVnode)) {
oldEndVnode = oldCh[--oldEndIdx]
} else if (sameVnode(oldStartVnode, newStartVnode)) {
// 旧开始 vs 新开始
patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx)
oldStartVnode = oldCh[++oldStartIdx]
newStartVnode = newCh[++newStartIdx]
} else if (sameVnode(oldEndVnode, newEndVnode)) {
// 旧结束 vs 新结束
patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx)
oldEndVnode = oldCh[--oldEndIdx]
newEndVnode = newCh[--newEndIdx]
} else if (sameVnode(oldStartVnode, newEndVnode)) {
// 旧开始 vs 新结束
patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx)
canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))
oldStartVnode = oldCh[++oldStartIdx]
newEndVnode = newCh[--newEndIdx]
} else if (sameVnode(oldEndVnode, newStartVnode)) {
// 旧结束 vs 新开始
patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx)
canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)
oldEndVnode = oldCh[--oldEndIdx]
newStartVnode = newCh[++newStartIdx]
} else {
// 四种情况都不匹配,通过key查找
if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
idxInOld = isDef(newStartVnode.key)
? oldKeyToIdx[newStartVnode.key]
: findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx)
if (isUndef(idxInOld)) {
// 新节点,创建
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx)
} else {
// 找到相同key的节点
vnodeToMove = oldCh[idxInOld]
if (sameVnode(vnodeToMove, newStartVnode)) {
patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue, newCh, newStartIdx)
oldCh[idxInOld] = undefined
canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm)
} else {
// key相同但节点不同,创建新节点
createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx)
}
}
newStartVnode = newCh[++newStartIdx]
}
}
// 处理剩余节点
if (oldStartIdx > oldEndIdx) {
// 添加新节点
refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm
addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue)
} else if (newStartIdx > newEndIdx) {
// 删除旧节点
removeVnodes(oldCh, oldStartIdx, oldEndIdx)
}
}
🔑 Key的重要性
Key是Vue进行节点识别的重要标识:
javascript
// 不使用key的问题
<ul>
<li>A</li>
<li>B</li>
<li>C</li>
</ul>
// 插入D后变成
<ul>
<li>D</li> <!-- 复用原来的A,内容改为D -->
<li>A</li> <!-- 复用原来的B,内容改为A -->
<li>B</li> <!-- 复用原来的C,内容改为B -->
<li>C</li> <!-- 新创建 -->
</ul>
// 使用key后
<ul>
<li key="A">A</li>
<li key="B">B</li>
<li key="C">C</li>
</ul>
// 插入D后
<ul>
<li key="D">D</li> <!-- 新创建 -->
<li key="A">A</li> <!-- 移动位置 -->
<li key="B">B</li> <!-- 移动位置 -->
<li key="C">C</li> <!-- 移动位置 -->
</ul>
🎯 性能优化策略
- 合理使用key:为列表项提供唯一标识
- 避免不必要的嵌套:减少VNode树的深度
- 使用v-show替代v-if:频繁切换的场景
- 组件级别的优化:shouldComponentUpdate等
Vue2的虚拟DOM和diff算法通过巧妙的设计,在保证功能完整性的同时,实现了高效的DOM更新机制。